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stratified cylindrical fluid. Part 1. Exact 
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The propagation of nonlinear hydromagnetic waves in a highly conducting, self- 
gravitating fluid in a cylindrical geometry, subject to the convective forces produced 
by a radial temperature gradient, is treated in a Boussinesq approximation. Exact 
wave solutions of the nonlinear magnetohydrodynamic equations (in the Boussinesq 
approximation) in the presence of convective forces are obtained for the case when 
the physical quantities are independent of the axial coordinate or the azimuthal 
angle in the cylindrical coordinates. The solutions represent waves propagating in 
the azimuthal or axial direction under the influence of the helical magnetic and 
velocity fields and the convective forces. The solutions may be applicable to the 
hydromagnetic waves in the Earth’s fluid core and the solar convection zone. 

1. Introduction 
Hydromagnetic (or Alfv6n) waves are highly significant in conducting fluids in a 

magnetic field. It is well known that the magnetohydrodynamic (MHD) equations 
admit solutions representing Alfv6n waves even in an incompressible inviscid fluid. 
The existence of such a wave of small amplitude was first predicted by Alfv6n in 1942 
(Alfv6n 1942, 1950). The existence of non-dispersive Alfv6n waves of arbitrary 
amplitude was subsequently suggested by Wal6n (1944), who concluded that an 
Alfven wave of any form, frequency and amplitude could exist in a uniform magnetic 
field. Recently, Hamabata (1990a) found a class of exact nonlinear wave solutions 
to  the MHD equations with large amplitude propagating in a straight but non- 
uniform magnetic field with constant or non-uniform velocity. Some exact nonlinear 
wave solutions to the MHD equations in a cylindrical geometry, which represent 
waves propagating in the azimuthal or axial direction or propagating helically on the 
cylindrical surfaces under the influence of the helical magnetic and velocity fields 
whose strength varies with radius, were also obtained by Namikawa & Hamabata 
(1987, 1988), Hamabata & Namikawa (1989) and Hamabata (1990b, c) .  

It is widely recognized that the strong azimuthal (toroidal) magnetic field is 
confined to the Earth’s core or the solar convection zone, where it is generated from 
the weak poloidal magnetic field by the differential rotation, and hence the magnetic 
field is generally helical. Studies of hydromagnetic waves under the influence of the 
helical magnetic field, the sheared velocity and the convective forces are of some 
geophysical and astrophysical interest and may be a useful stepping-stone in the 
solar dynamo or geodynamo problem. In this connection, Parker (1984) found exact 
nonlinear Alfv6n wave solutions with large amplitude but restricted form 
propagating along a uniform horizontal magnetic field in a highly conducting 
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incompressible fluid subject to the convective forces produced by a uniform vertical 
temperature gradient within a Boussinesq approximation. As stated above, however, 
an important property of the solar and the Earth's magnetic field is the curvature of 
the field lines. Thus, a local analysis of hydromagnetic waves which uses a plane layer 
with a uniform magnetic field does not model some of essential physics in the Earth's 
core and the solar convection zone, and one hence is faced with the difficulty of 
solving the global wave propagation problem. A spherical geometry is often too 
difficult to work with, so a useful compromise is to consider an infinite cylinder with 
a helical magnetic field and a shear flow. Hence in this paper we wish t o  determine 
whether there are exact wave solutions to the dynamical equations (in the 
Boussinesq approximation) for a fluid in a cylindrical geometry subject to the 
convective forces produced by a radial temperature gradient, by extending the 
analysis by Hamabata (1990b) to include the effect of stratification. As we shall see, 
there is a class of exact wave solutions of arbitrary amplitude but restricted form 
propagating in the azimuthal direction and in the axial direction under the influence 
of the helical magnetic and velocity fields which may be of some physical interest in 
the Earth's core as well as in the solar convection zone. 

We consider the motion of an electrically conducting self-gravitating fluid in an 
infinite cylindrical annulus ril< r < ro with respect to a cylindrical coordinate system 
( r ,  #, z )  (with unit vectors i, Q and 2). We assume that the Boussinesq approximation 
is valid and that effects of thermal, viscous, and magnetic dissipation may be 
neglected. The equations describing the velocity, magnetic field and temperature 
variations are 

Z + V . V V = - V P + H . V H - O V Q ,  ( 1 )  

aH - _  at - v x (VXU) ,  

aT -+ at V-VT = 0, (3) 

v.  v=  0, ( 4 )  

V - H =  0, (5 )  

where V is the fluid velocity, H = B/(47tp)i is the equivalent Alfvkn velocity as a 
measure of the magnetic field B, P = p / p  - Q +iH2 is the modified pressure including 
the magnetic pressure as well as the undisturbed gravitational potential Q ( r ) ,  and T 
is the temperature. Here the fluid is assumed to be subject t o  a linear thermal 
expansion with coefficient a, so that the deviation from the constant mean density 
p is Ap = -apT. The gravitational potential is determined by 

where G is the constant of gravitation. 
We are interested in deformations of a system whose undisturbed state involves 

the helical magnetic field H,,(r) and the helical velocity field &(r )  which are given by 
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and also involves the temperature distribution T,(r) whose radial gradient may be 
maintained by a distribution of heat sources. Here T is the Alfvkn frequency of the 
azimuthal component of the magnetic field, 52, is a constant, 6 is the velocity shear 
of the azimuthal flow component. We assume that [(r,) = V(r,) = 0, ~ ( r , )  = 7, and 
H(r,) = H ,  with 7, and H ,  constants, that is, the flow is zonal with velocity roQ0 at 
the outer boundary T = r,. 

In $ 2  we consider the case when the physical quantities are independent of z. In 
$ 3  we also consider the case when the physical quantities are independent of 4. 
Simple solutions to the reduced equations derived in $32 and 3 satisfying the above 
conditions are obtained to represent the examples of translationally and axially 
symmetric hydromagnetic wave motions in a thermally stratified cylindrical fluid 
in $4. 

2. Translationally symmetric wave motions 
We consider the case when the physical quantities depend on two cylindrical 

coordinates, r and q5, and not on z. Equations (4) and ( 5 )  are satisfied identically if 
we define the velocity and magnetic fields in terms of auxiliary scalar functions, 

(9) 

(10) 

where w is the constant angular velocity of the wave. The contours A = constant 
identify the projection of the magnetic field lines, and the contours Y = constant 
identify the projection of the streamlines on the plane perpendicular to the z- 
direction. 

V = V Y ( r ,  q5 - w t )  x z"+ E ( r ,  4 - wt) 2, 
H = VA(r ,  4 - w t )  x z"+ Hz(r ,  q5-wt) 2, 

Substituting (9) and (10) into the induction equation (2), we have 

CIA -+ V.VA = 0, 
at 

8HZ -+ V.VH, = w-vv,. 
at 

Equations (3) and (1 1) indicate that both T and A move with the fluid and hence we 
find that the temperature is a function of A only, i.e. 

T = T(A) .  (13) 

Equation (11)  can also be written as 

a( !P+$r2w,A) 

a(r3 4) 
= 0, 

which has the general solution 
Y+$r2w = f ( A ) ,  

where f is an arbitrary function of its argument. This relation states that the 
projections of V and H on the plane perpendicular to the z-direction coincide, in the 
frame of reference (q5 = w t )  moving with the wave. Making use of (15), (12) reduces 
to 
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where f denotes the derivative off with respect to its argument A .  The general 
solution of (16) is 

where W is an arbitrary function of A .  

component of ( 1 )  reduces to 

V , - f f H ,  = W ( A ) ,  (17) 

Next we consider the equation of motion ( 1 ) .  Making use of (15) and (17), the z- 

which is satisfied for any form of H,  iff’ = & 1 or for 

iff’ + 1 .  
H ,  = H,(A) 

Making use of (13), the curl of the r- and $-components of (1)  reduces to 

a(v2A - ~ T v , A )  - a(vy,f) 
a(r9 9) a(r9 $1 . 

-- 

In view of the relation f = f ( A ) ,  this equation finally takes the form 

which has the general solution 

where M is an arbitrary function of its argument. It should be noted here that f’ is 
interpreted as the Alfv6n Mach number of the perturbed flow velocity perpendicular 
to the z-direction in terms of the perturbed AlfvBn velocity perpendicular to the z- 
direction. Also, although the possible existence of critical points in (22) a t  which 
f‘ = & 1 is a real problem that can be found in astrophysical situations when the 
perturbed flow perpendicular to the z-direction becomes superAlfv6nic in terms of 
the perturbed AlfvBn velocity, we do not consider such a problem here and consider 
only for the case off’  = constant ( $; f 1).  It should also be noted that iff’  = f 1 
everywhere, then (22) reduces to -a@(r) = M(A) /T’ (A)  which implies that A must 
be a function of r only and therefore there is no wave solution of (22) for a finite value 
of aT’@ when f’ is a constant (being equal to f 1 ) .  Forf’ = constant (=+ f l) ,  we must 
solve (22), which replaces the initial set of equations (1)-(5). If we specify the 
arbitrary functions off(a), M ( A )  and T(A) ,  it can be solved for A.  A simple solution 
of (22) will be given in $4. 

The scalar product of (1)  and H reduces to 

which has the general solution 

~ - @ + ~ ~ 2 - r w ~ - - U ~ + a ~ @  = u(A),  (24) 
P 

where I7 is an arbitrary function of A. Equation (24) provides an equation for the 
pressure p in terms of A .  
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3. Axisymmetric wave motions 
Next we will seek the exact axisymmetric wave solutions for (1)-(5), in which the 

physical quantities are independent of the azimuthal angle q5. The axisymmetric 
velocity and magnetic fields can be expressed as the superposition of a poloidal and 
a toroidal component by means of two scalar functions. They are 

v = VX(r, z - ct)  x $ / r  + V,(r, z - ct) 4, 
H =  V S ( r , z - c t )  x J / r + H , ( r , z - c t ) $ ,  (26) 

(25) 

where c is a constant wave velocity. The scalar functions x and S are the stream 
function and the magnetic potential of the poloidal field, and the equations x = 
constant and S = constant define the stream and the magnetic flux surfaces, 
respectively. 

Substituting (25) and (26) into the induction equation (2), we obtain 

as -+ V - V S  = 0, 
at (27) 

(28) 
i?H 
di- V .  VH,  = H .  VH,. 

at 

Equation (27) indicates that S moves with the fluid, thus we have from (27) and (3) 
that 

Equation (27) can also be written as 

T = T(S) .  

\ I  I 

which has the general solution 
X-$cr2 = F ( S ) ,  

(29) 

where F is an arbitrary function of its argument. Equation (31) relates the velocity 
and the magnetic field on the meridional planes. By using (31), (28) yields 

where F’ denotes the derivative of F with respect to S. The general solution of (32) 
is 

where SZ is an arbitrary function of S.  

as 

q - F ‘ H ,  = rsZ(S), (33) 

In a similar manner, the #-component of the equation of motion ( 1 )  can be written 

which, in view of the relation F = F ( S ) ,  has the general solution 

H,-FV+ = L(S) / r ,  (35) 
with L(S)  an arbitrary function of S.  

Equations (33) and (35) are combined to yield 

V,( 1 - F f 2 )  = rsZ +F’L/r, (36) 
H,(1-F’2) = rF’Q+L/r. (37) 
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If F = k 1, then (36) and (37) reduces to 

and SZ = L = 0. 
v, = &IT$ 

The curl of the r- and z-components of (1) yields 

where 

It should be noted here that F’ is interpreted as the Alfvih Mach number of the 
perturbed poloidal flow in terms of the perturbed poloidal Alfvkn velocity and that 
although the possible existence of critical points in (39) at which F‘ = f 1 is the real 
problem, we do not consider such a problem here and consider only the case of F = 
constant (+ k 1). I t  should be noted here that if F‘ = & 1 everywhere, then (39) 
reduces to aTa(@,S) /a(r ,  z )  = 0 which implies that  S must be a function of r only, 
and therefore there is no wave solution of (39) for a finite value of aT@ when F is 
a constant (being equal to f 1). Hence we will consider only F’ = constant ( + f 1). 
For F’ + f 1, we find from (36) and (37) that  

Substituting (41) into (39), we obtain 

where E is defined by 

Equation (42) has the general solution 

E = E(S) .  (44) 

If we specify the arbitrary functions F ( S ) ,  L (S ) ,  SZ(S), T ( S )  and E(S) ,  the initial MHD 
problem of solving the set of equations (1)-(5) reduces to the mathematical problem 
of solving the single, elliptic partial differential equation (43) with (44) for S. Simple 
solutions to (43) with (44) will be presented in the next section. 

The scalar product of ( 1 )  and H reduces to 

which has the general solution 

- @+a ~2 - rQv, - c ~ ,  + a ~ ~ r  = A ( A  ), (46) 
P 

where A is an arbitrary function of S. Equation (46) provides an  equation for the 
pressure p in terms of A .  
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4. Simple solutions 
The differential equations (22)  and (43) with (44) each have an infinite number of 

mathematical solutions. In this section we treat only a few of the simpler solutions, 
illustrating the advantages of the equations for treating hydromagnetic wave 
motions in a thermally stratified cylindrical fluid. 

4.1. Translationally symmetric solutions 

First we consider (22)  for translationally symmetric wave motions. As an example, 
if we take f '  = Q ,  M ( A )  = - ( 1  -Qz)  k2A and !P' = q/t$7,, then (22)  reduces to 

@ 
27rGp 

(1 - QZ) (V2A + P A )  - €- - - 0, 

where Q (+ & 1) ,  k and q are constants, and 

Crq(2XGP) 
 TO ' 

I 
€ =  

The general solution to (47) is 

(47) 

where we have used the relation (6), C,, 6, and 8, are constants, Jn(kr) and Y,(kr) 
are Bessel functions of order n of the first and second kind, and n is restricted to 
integral values. From (9), (lo), (17) ,  (19) and (49), we have 

V = rwJ+ W ( A )  z"+QH, (50) 

where 

P T = - A  + constant, 
rz 70 

1 "  

' n-1 
H r = - E  n[C,J,(kr)+Q, Yn(kr)]cos[n($-wt)+8,], 

(53) 

(54) 

11 n 
r 

+en kY,+l(kr)--Y,(kr) sin[n($-wt)+o,], 

H ,  = H,(A). 

The effect of the geometry is to impose a restriction on the allowed values of k. We 
assume that the boundaries are rigid and perfectly electrically and thermally 
conducting, and hence the inviscid flow satisfies 

( 

v = H r = O ,  T =  constant on r =  ri and r,. (55)  

Thus, we have k r o = j m , 2  ( m , l =  1 , 2 , 3  ,... ), (56) 

where the j , , l  are successive positive roots of Jrn(x) Y,(yx) -J,(yx) Y,(x) = 0, with 
y = ri/ro.  The solution satisfying the boundary conditions is given by (A 1)-(A 9) in 
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FIQURE 1. A sketch of the projection of the magnetic field lines or the streamlines on the plane 
perpendicular to the z-direction for the translationally symmetric wave motions. The left half 
shows the total (mean and perturbed) field and the right half the perturbed field. 

the Appendix. The solution represents waves propagating in the $-direction with the 
constant angular velocity w,  under the influence of helical magnetic and velocity 
fields H o ( r )  and K( r ) .  The perturbed velocity and magnetic fields are not parallel 
unless the function W is a constant. In  figure 1 is shown a sketch of the projection 
of the magnetic field lines or the streamlines on the plane perpendicular to the z- 
direction for the simple case that @ = - xGpr2, C,  = 6, = 0, m = 2, and I = 1.  For the 
problem originally posed, we require that the mean magnetic and velocity fields must 
satisfy (7) and (8), respectively. Hence, we have 

V(r )  = W(Ao) +QHJAo),  (58) 
H ( r )  = H,(A,), (59) 

C(r) = W - Q o + @ ( r ) ,  (60) 

where we have assumed for simplicity that C, = 6, = 0, and g( r )  = -d@/dr is the 
gravitational acceleration. 

From (60) and (61) with [(r,) = 0 and 7(r0)  = 7,, we find 

W-0, = - Q T ~ ,  (62) 
2xGp 

E = k2(1 -Q2)T0- ,  
9 o l r o  

where go = g( ro )  is the gravitational acceleration at the outer boundary r = r,. 

(64) 
From (48) and (63), we have Q = & (1 -N,)i ,  

ago Q Nl = - 
k2r: 7: ’ where 

which measures the strength of the stratification (or the convective force). From (62) 
and (64), we find the angular frequency of the wave in the frame of reference rotating 
with the angular velocity Q,: 

On the other hand, the radial temperature gradient is given by 

w -Q, = f 70( 1 -N,)i. (66) 
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and hence we have 

which implies that Nl corresponds to the square of the normalized buoyancy or 
Brunt-Vaisala frequency. 

From (67) and (68), we find that Nl < 0 for dq /d r  > 0 and Nl > 0 for d q / d r  < 0. 
Thus, if the fluid is stably stratified (N1 < 0 ) ,  then the angular velocity of the wave 
is increased. On the other hand, the angular velocity of the wave declines for Nl > 0, 
reaching zero for Nl = 1. For Nl > 1 the field stands still and grows exponentially 
with the passage of time. It should be noted here that if the gravitational 
acceleration is given by g(r )  = 2nGpr which is realized when the mean density of the 
material inside the inner boundary r = ri is equal to that of the fluid or the inner 
boundary does not exist (i.e. ri,= 0) and W = -QHz, then we have g(r)  = V(r )  = 0, 
and hence we have V, = rQod, that is, the fluid in the stationary state rotates 
uniformly with the angular velocity 0,; otherwise the basic stationary state has 
necessarily a velocity shear (i.e. the differential rotation) for the existence of the 
wave. 

4.2. Axisymmetric solutions 

Next we consider (43) with (44) for the axisymmetric wave motion. For example, if 
we take F = Q, L = (1 - Q') /3S, Q = (1 - Q') Q,, E = -4y//3' and T' = q/rE H,, then 
(43) reduces to 

aq(2nGp) 
. P o  , 

where /3 is a constant and 1 1 =  

The general solution to (69) is 

x sin [ (/3' - K ~ ) ~ ( x  -ct) +/3,], (71) 
where D,, d, and pK are real constants and J1(m) and q ( K r )  are the first-order Bessel 
functions of the first and second kind. From (26), (37) and (71), we obtain the T- ,  4- 
and z-components of H :  

H, = - c (p - K ~ ) ; [ D ~  J1(Kr) +dK Y,(K~)]  cos [(p - K ~ ) + ( X -  ct) +/3,1, 

H, = QQor+/3C [ D K J l ( ~ ~ ) + d K ~ ( ~ r ) ] s i n [ ( / 3 2 - ~ 2 ) ~ ( z - ~ ~ ) + / 3 K ] ,  (73) 

(72) 
K 

C 

We also find from (25) ,  (26), (31), (33) and (29) that 

V = (1 - Q') 52, rd+ cf + QH, 

T = -  s + constant. 
? . S O  

If we assume the same boundary conditions (55)  as for the translationally symmetric 
wave motions, then the allowed values of K are restricted such that K = /3 and 

K r ,  =jl.t ( I  = 1,2,3, ...), (77) 
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Z 

FIGURE 2. A sketch of the poloidal magnetic field lines or the poloidal streamlines for the 
axisymmetric wave motions. The left half shows the total (mean and perturbed) field and the right 
half the perturbed field. 

and 

where thej,,, are successive roots of Jl(x) Y(yx)-J , (yz)  Y,(z) = 0 with y = r i / ro.  The 
solution satisfying the boundary conditions is given by (A 10)-(A 18) in the 
Appendix. The solution represents waves propagating in the z-direction with the 
constant velocity c, under the influence of helical magnetic and velocity fields H , ( r )  
and K(r) .  It is evident from (A 11) that the solution does not represent equipartition 
of energy between the magnetic and fluid variations, the factor Q setting it out of 
balance. Figure 2 shows a sketch of the poloidal magnetic field lines or the poloidal 
streamlines for the simple case where @ = -xGpr2, D, = fi, = 0, and m = I .  If we 
rotate these lines with respect to the z-axis, we can get the stream or the magnetic 
flux surfaces of the poloidal field. For the problem originally posed, we must require 
that the mean magnetic and velocity fields must satisfy (6) and (7),  respectively. 
Thus, we have 

V( r )  = c + Q H ( r ) ,  (79) 
r,~ 2@+rd@/dr 

H ( r )  = 
/3'(1-Q2) 2xGp ' 

t ( r )  = 0, 7 ( r )  = T,  = QQ,, (81) 
where we have assumed for simplicity that D, = B, = 0. From (79) and (80) with 
V(r,) = 0 and H(r , )  = H,, we find 

c = - Q H  0 7  (82) 
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From (70) and (83), we obtain 
Q = f (1 -N,)i, 

where 

(84) 

(85) 

which measures the strength of the stratification (or the convective force). From (82) 
and (84) we find 

(86) 

From (A 12) and (A 14) with D, = Dp = 0, we find the temperature gradient: 

c = T (1 -Nz)&lo. 

From (85) and (87), we find that N ,  < 0 for dq /d r  > 0 and N, > 0 for dq /d r  < 0 
since 2@+rd@/dr is negative. Thus, if the fluid is stably stratified (N, < 0) ,  then 
the wave velocity is increased. On the other hand, the wave velocity declines 
for N ,  > 0, reaching zero for N,  = 1. For N ,  > 1 the field stands still and grows 
exponentially with the passage of time. It should be noted here that even if the 
gravitational potential is given by @(r)  = -nGpr2, H ( r )  and V(r )  are finite and 
depend on r for a finite value of c and therefore the basic stationary state has 
necessarily an axial shear flow for the existence of this type of wave solution. 

As another example, if we take F = Q, L = 0,Q = (1 - Q2) Q,, E = - 4( 1 - Qz) u2S, 
and T' = q/roHo, then (43) reduces to 

where u is a real constant. The general solution to (88) is 

S = -  W ( 1  ' -Qz) r2 + /I [. /I F (g 8u2 , u'r') +I?, Go (E 8u2 ' uzrz)] sin &(z - c t )  + a,], 

(89) 

where K,, E, and aP are real constants, Fo and Go are the zeroth-order regular and 
irregular (logarithmic) Coulomb wave functions (Abramowitz & Stegun 1965). Here 
we have taken the gravitational potential to be 

@ = - (g0/2r0) r2 with go = 2nGpr,, (90) 
which is realized when the mean density of the material inside the inner boundary 
r = ri is equal to that of the fluid or r i  = 0. If we add a term proportional to lnr to 
the gravitational potential, then we cannot find the solution of (88). From (26) and 
(89), we obtain 

cos~(z-ct)+a,] ,  (91) 

H = -  4u2(1 -Q2) + C , [ 9 (K, Fo (5, u'r') +I?, Go ($ , uzrz))  

-2u2  (I + ($1) (K,Fl ($, u 2 P )  +I?, G, (&, u'r'))] sin &(z-ct) +a,], (93) 
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where F, and G, are the first-order regular and irregular Coulomb wave functions. We 
also find that V and W are related by (75) and the temperature T is expressed in 
terms of S by (76). 

If we impose the same boundary conditions (55) as for the translationally 
Symmetric wave motions, then the allowed values of p are restricted such that 

with (95) 

The solution satisfying the boundary conditions is given by (A 19)-(A 23) with 
(A 10)-(A 13) in the Appendix. This solution represents waves propagating in the z- 
direction with the constant velocity c, under the influence of helical magnetic and 
velocity fields H,(r) and K ( r ) ,  and the non-uniform temperature G(r ) .  Both the 
perturbed velocity and magnetic fields are perpendicular to the $-direction. For the 
problem originally posed, we require that Ho(r) and V,(r) must satisfy (6) and (7), 
respectively. Hence we have 

V(r )  = c+QH, = 0, (96) 

-r 
4v2( 1 - Q2) ' 

H ,  = (97) 

[ ( r )  = 0, T ( r )  = 7, = QSZ,, (98) 

Q = (1 -N3)f, (99) 

where we have assumed for simplicity that KO = I?, = 0. From (70) and (97)' we have 

where 

which measures the strength of the stratification (or the convective forces). From 
(96) and (99)' we find the wave velocity 

c = T H O (  1 -N3)i. (101) 
On the other hand, the radial temperature gradient is given by 

From (100) and (102) we find that N3 < 0 for d q / d r  > 0 and N3 > 0 for dT,/dr < 0. 
It should be noted here that although the qualitative properties of the wave for the 
sign of the radial temperature gradient d q / d r  are similar to those of the previous 
example, this solution represents waves propagating in the z-direction under the 
influence of a helical magnetic field and mean zonal flow without a shear, thus 
differing from the previous example. 

5. Conclusions 
In this paper we have presented the reduction of the vector MHD equations (in the 

Boussinesq approximation) in the presence of convective forces in cylindrical 
coordinates into a scalar, elliptic, partial differential equation of the magnetic 
potential for the translationally symmetric wave motions and for the axisymmetric 
wave motions. We have also obtained simple solutions to the reduced equations for 
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a thermally stratified fluid in an infinite cylindrical annulus with perfectly conducting 
boundaries that represent waves propagating in the azimuthal and axial directions, 
under the influence of helical magnetic and velocity fields whose strength varies with 
radius. It has been shown that if the fluid is stably stratified then the wave velocity 
is increased as the strength of stratification is increased; and that if the sense of 
stratification is changed then the wave velocity declines, reaching zero with the 
strength of convective force, and if the strength of convective force becomes greater 
than a critical value then the fields grows exponentially with the passage of time. We 
have also shown that, except for a specific case, the waves can exist when the fluid 
in the stationary state has a velocity shear. It should be emphasized here that we 
have constructed exact solutions of the nonlinear problem by takingf’ = Q for the 
translationally symmetric wave motions or F = Q for the axially symmetric wave 
motions, Q being a constant, because the equation is then exactly linearized. But no 
superposition of solutions of that kind with different Q can be an exact solution. 

A generalization of the reduction presented here to the helically symmetric wave 
motions will be considered in another paper of this series. Note that the helical 
symmetry for a stationary MHD flow was treated by Tsinganos (1982). 

Appendix 
If we decompose A ,  V, H and T into stationary and fluctuating parts, i.e. 

A = A, + a, V = V, + u, H = H, + h,  and T = T, + 0, the solution for translationally 
symmetric wave motions satisfying the boundary conditions reduces to 

& = rw$+ W(A,) 2+QHo, 
u = [ W(A, + a) - W(A,)] 2 + Qh, 

0 = q/(r:70)  a, 

(A 1) 

(A 2)  
T, = q/(rt7,)Ao+constant, (A 3) 

(A 4) 

a = a,,,(r)sin [m($-wt)+e,], (A 6 )  

h = ma,, z( r )  cos [m( $ - wt)  + em] P- %& sin [m( $ - ot) + em] $ 
dr 

If we decompose S ,  V, H and T into stationary and fluctuating parts, i.e., 
S = So + S ,  V = V, + U, H = H, + h and T = To + 0, the solution of the first example 
for the axisymmetric wave motions satisfying the boundary conditions becomes 

V, = ( 1 - Q 2 ) Q o r ~ + c 2 + Q H o ,  (A 10) 

T, = q/(rEHo) S,+constant, 
u = Qh, (A 1 1 )  

(A 12) 
0 = q / ( r X J s ,  (A 13) 



s = C. sp(r) sin @(z-ct) + gP], 

r 

where c, means the summation over all p satisfying (94). The mean and perturbed 
velocities V, and v and the mean and perturbed temperatures T, and 0 are given by 
(A 10)-(A 13). 
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